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The time correlation functions for a Gaussian wave-packet preparation of the dissipative harmonic oscillator
evolving from three initial conditions for the heat bath are calculated and compared with each other for Ohmic
heat baths. The three initial distributions for the bath are the factorized, partially factorized, and unfactorized
distributions. Explicit analytical formulas are derived and then used to study the effect of the three initial
distributions on the subsequent dynamics. We find that the transient behavior does not depend sensitively on
the initial condition as long as the initial Gaussian wave function of the system is centered at the equilibrium
point. Differences become noticeable as the center of the wave packet is significantly shifted from the equi-
librium point. These observations justify to some extent the prevalent use of factorized initial conditions for
studying real time quantum dynamics in dissipative systems. The total energy in the system is also calculated

for the three initial states and its relation to features in the decay is pointed out.
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I. INTRODUCTION

The challenge of numerical solution for the quantum dy-
namics of dissipative systems is slowly but surely being an-
swered. The first numerical solutions for activated barrier
crossing in a dissipative system [1] and for the spin boson
problem [2,3] have been published over a decade ago. More
recently, results have been reported for correlation functions
of nonlinear systems coupled bilinearly to harmonic baths
with hundreds of bath oscillators [4].

In most of these recent computations, the initial condi-
tions of the bath are assumed to be factorized [5]. The fac-
torization approximation is used since it simplifies the ensu-
ing computation, which calls for averaging over the
thermally distributed bath modes. When using the factoriza-
tion approximation, this distribution is known analytically
and is Gaussian.

The question of initial conditions is also of interest when
deriving reduced equations of motion. Ankerhold [6] has re-
cently derived reduced equations of motion which are more
accurate than the Caldeira-Leggett high temperature reduced
equation of motion [7] using unfactorized initial conditions.
The factorization approximation has been used by Shao to
derive reduced equations of motion [8] which are also more
accurate than the Caldeira-Leggett high temperature equation
of motion.

There have been several discussions on the effect of the
initial conditions on the dynamics of dissipative systems
[9-15]. For instance, Hakim and Ambegaokar [9] investi-
gated the dynamics of a dissipative free particle evolving
from factorized and nonfactorized initial states and observed
different transient behaviors. As the bath is generally as-
sumed to evolve from a displaced equilibrium state due to
the couplings to the system, it is believed that the factorized
initial state should be a good approximation only at weak
dissipation. Recently, Ambegaokar derived an expression for
the reduced density matrix of the dissipative harmonic oscil-
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lator also by assuming a factorized initial condition [16]. He
then discussed the issue of equilibration in Ref. [17]. Initial
correlations have been also considered in the context of re-
duced equations of motion by Breuer and co-workers
[18,19]. They employ projection operators and fourth order
perturbation theory in the system bath coupling to, among
others, study the effects of initial correlations on the dynam-
ics.

The central question we consider in this paper is whether
the use of the factorization approximation leads to serious
errors, or whether it includes in it most of the relevant dy-
namics, so that further more sophisticated and entangled ini-
tial distributions are not needed for physically reasonable
parameter ranges.

The paradigm of dissipative systems is the harmonic os-
cillator for which analytical results are known for almost
twenty years [10]. Given the factorized initial condition,
the master equation was first derived by Haake and Reibold
[20] who also found anomalies in the case of strong damping
and low temperature. The same master equation was later
rederived by Hu, Paz, and Zhang [21] and by others [22].
Karrlein and Grabert [23] (see also Ref. [24]) analyzed the
conditions for existence of an exact dissipative Liouville op-
erator and also set up the master equation for thermal initial
conditions. Without citing the result of Haake and Reibold,
Ford and O’Connell [25] worked out the exact solution of
such a master equation and pointed out the drawback inher-
ent in the master equation. Recently, Pereverzev [26] studied
the evolution of the damped harmonic oscillator for three
classes of initial states for the bath modes, but assumed a
factorized condition for the initial total density matrix. Van
Kampen compared the reduced density matrix obtained from
factorized and unfactorized initial conditions, claiming that
the former is inappropriate [27]. His conclusion though is
based on results derived from second order perturbation
theory so it is not of general validity. Furthermore, the more
recent results of Ref. [18] based on fourth order perturbation
theory indicate that the differences are not so large.
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Except for these works, however, we are not aware that
even for the harmonic oscillator any other systematic study
of the dynamics for different types of initial distributions
have been undertaken. The aim of this paper is to understand
what happens for the dissipative harmonic oscillator under
differing conditions. We derive explicit expressions for the
thermal correlation function using three different initial dis-
tributions. These correspond to factorized, partially factor-
ized, and unfactorized initial conditions. The resulting ana-
lytical expressions are useful as benchmarks with which to
compare other methods, whether approximate or numerically
exact ones.

We conclude that as long as one is not in the strong fric-
tion regime, factorized initial conditions are sufficiently
similar to the unfactorized case to justify their usage. Even
when the friction is strong, there are cases where one may
use partially factorized initial conditions to obtain very rea-
sonable results. The detailed expressions derived in this pa-
per may also be used as benchmarks for new methods of
solving the dynamics of dissipative systems, such as the
semiclassical initial value representation approach [28].

II. SETTING UP THE PROBLEM

We will study the dynamics of a dissipative system in
which the system is initially prepared in the form of a Gauss-
ian wave packet. The Hamiltonian of the system and the bath
is

H=H+H,. (2.1
The system and bath Hamiltonians are defined to be
l,
Hy=>pg+ Vig), (2.2)
1 e 2]
Hyp=72 {pfﬁ wf()cj - —éQ> } =>n.  (23)
j=1 w; Jj=1

Initially the system wave function is chosen to be a Gaussian
wave packet:

1/4
(qlpy = (£> ew(— E(q - qa)2)~
T 2

We will calculate the autocorrelation function of the projec-

(2.4)

tion operator IA"pE |)(y| and will distinguish between three
choices for the initial conditions, namely
CO=Tr{p O PyPy 1)} =123, (2.5

where I%(t):e’“” hﬁwe"”’/ﬁ is the Heisenberg operator.
The first choice for the initial conditions is

pN(0) = Pye iz, (2.6)
where the bath Hamiltonian is defined as
| N
Hp= 52 [p} + wix?] (2.7)
=t

and the partition function of the bath is
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N
Z, = Trze Pz = H
j=1

1

2 sinh(fiBw;/2) 28

This case is referred to as factorized initial conditions, i.e.,
the bath is initially independent of the system coordinate.
The second (Hermitian) choice is
p2(0) = Py Pssp y7,, (2.9)

where Zz=Tr{IA’¢,e‘BHS’B}=Z1 due to the fact that the system
wave function is normalized and that the Hamiltonian H  is
diagonal in the system coordinate. We will refer to this case
as partially factorized initial conditions.

The third (Hermitian) choice is using the full Hamil-
tonian, that is,

pN0) = Pye PP )7, (2.10)
where the “partition function” is defined as
Zy="Tr{P je P} = Try(le P y) (2.11)

and this case corresponds to nonfactorized initial conditions.

For all three correlation functions, by definition, C;(0)
=1. In the absence of coupling to the bath, all three correla-
tion functions are identical to the isolated system correlation
function. In the infinite time limit, the dynamics is assumed
to approach equilibrium [29]. The equilibrium reduced den-
sity operator is

A Trple P}

bs . (2.12)

where Z=Tr{e !} is the partition function of the full Hamil-
tonian. One then readily finds that for any choice of the
initial thermal distribution, the equilibrium limit of the cor-
relation functions is

Trg{(le™ )}

Ci(t—»)= Trs{f)ﬁﬁ.//} = 7

,  (2.13)

such that the double brackets imply integration over the com-
bined system and bath space.

Especially if the system potential is harmonic, it is useful
to write down the correlation functions in the Wigner repre-
sentation. Denoting the “densities” p(")(O)ISlp in phase space
as p(i)(pq,q,gx,)_(), i=1,2,3, and the phase space distribution

of the projection operator f’l/, of the system as

1 1
Wpyq) = ECXP<_ ﬁpﬁ -T'(g- qa)2> (2.14)

one has that the correlation function for the dissipative har-
monic oscillator is the phase space integral of the product of
the density with the classically time evolved phase space

density of f’wz

dp ,dqdp . dx

Ci(t) =2mh f Wp(“(pq,q,px,z)tﬂ[pq(t),q(t)].

(2.15)
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One of the central purposes of this paper is to understand
the differences in the behavior of the correlation function for
the three different choices of thermal averaging. To obtain
analytical expressions we review below briefly the normal
mode transformation for a harmonic dissipative Hamiltonian
[20,30].

III. THE NORMAL MODE TRANSFORMATION

The harmonic oscillator potential is

Vig) = %wzqz. (3.1)
Notice that we have allowed the origin of the potential to be
at ¢=0. If the origin is at, say, ¢, one can always shift the
definition of the system and bath modes so that one will
finally remain with the nonshifted Hamiltonian. Since the
full Hamiltonian is quadratic in the system and bath vari-
ables, it can be diagonalized and written down as

N
1
H==2 (p? +\}), (3.2)
21:0 v Y

where the new coordinates and momenta are given by an
orthogonal transformation matrix U such that

N N
q=2uj0yj’ 0= Ujyj. (3.3)
j=0 j=0

The transformation matrix elements are given as [31]:

[1+E

-1
, j=0,1,....,N (3.4)
kl(wk )\2)2:|

and
c

— —m
Ujm= 2 2 %o
i m

m=1,...,N. (3.5)

The normal mode frequencies A; are the N+1 solutions of
the equation

-1
2 )\2)} . (3.6)

Since now the Hamiltonian is a sum of separable harmonic
oscillators it is easy to write down the time evolution of each
of the normal modes:

lzw [1+E 3

Dy,
y{1) = y; cos(\j1) + f‘sin()\ ) (3.7)
J
and similarly for the momenta. It thus follows that
N
q(1) = 2 ujoy(0). (3.8)
j=0

From the definition of the normal mode transformation we
have
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N

Yi=ujq+ E U j X,
k=1

(3.9

and a similar expression for the initial momentum Py

To make further progress we define some aux111ary func-
tions:

H(f) = E—Lsm()\ 1), (3.10)
J=0 j
N
H,(t):}‘,z')‘%”ﬂsin(xjt), I=1,....N, (3.11)

J=0 J
so that now we have

N

q(1) = qH(1) + pH(1) + 2 [oH (1) + p H(0)]. (3.12)
=1

The time dependence for the system momentum p,(#) is then
given by the time derivative of the equation for ¢(z).

We also note that the normal mode coordinate representa-
tion of the thermal operator is

N
A 1/2
(yle ™y =11 (-L)
= = 0 2

A
XCXP{— E‘[(y, +y/?)cosh(y;) - 2y,y,]}
(3.13)

with

N

= , 3.14
Ih sinh(7y;) ( )

so that the Wigner representation of the thermal density e "
is

tanh( 8\ ; /2)
wh

tanh(ﬁ,B)\ 12)

p(py.y) = H (P}, + Ny}

(3.15)

The continuum limit is obtained by defining spectral den-
sities. The spectral density of the bath is defined as

o ol C2-
J(©)= =2 L o-w) - do+o)]

2 =1 @)

(3.16)

and the associated friction function is the cosine Fourier
transform of the spectral density:

() = %Jm decos(wt).
T I3)

0

(3.17)
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The spectral density of the normal modes is defined as [32]

N 2
T U
I = =2 L[60=\) = Sh + )] (3.18)
2t N

and one can show [33] that it is related to the spectral density

of the bath modes J(w) through the relationship

J(N)

1) = [0 = N2 =\ Im{3()} P + 120

(3.19)

The spectral densities are useful when considering the
continuum limit of various functions that appear in the ana-
lytic expression in discrete form. For example, we consider
the function H(z) defined above in Eq. (3.10) and note that

N 2 I
H(t)=2msin()\jt)=£ f AN(\)sin(\). (3.20)
=0 Nj ™o

IV. HARMONIC CORRELATION FUNCTIONS
A. Case 1: Factorized initial conditions

The definition of the Wigner distribution in phase space is

© 1 N+1
P (pyq.p.x) = (ﬁ) J_

d§ etpqéqlh de elpr &l
j=1
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N
pMpga.px) = I ooy (W) (42)
j=1
with
tanh(72 8w /2)
PPy, x)) = T

Xexp{ tanh(ﬁﬁw/Z)(—pxl+% )]

(4.3)

To obtain the correlation function we use Eq. (2.15) and the
explicit time dependence of the system coordinate and mo-
mentum as obtained from Eq. (3.12). This leaves us with the
necessity of performing Gaussian integrals over the initial
conditions to obtain an explicit formula for the correlation
function.

To do this, we introduce into Eq. (2.15) the identity
through two delta functions,

1= f izl - 0],

£ £ 3 £ ”
29 =l (t) _ 24 >
><<q+ Xt 0)P,|q S X5/ =f dp.8lp.—p,1)], (4.4)
4.1)
When the initial conditions are factorized, one finds and their Fourier representations, so that
J
5[ % N N
C,(t) = Py f dzdp.dkdie™ e P {y(p.,2)] | dp,dqll dpxjdxje!f@q,q)l_[ Pi(ps X))
_ —o j=1 j=1
5 o= TaH (0 +p HOZL Dy (0)-4p. H O p=illaH (0 +pHE ] Loy (0+p, Hy(0)T) (4.5)
One can now perform the Gaussian integrations over all the variables except (k,{) to find the intermediate result:
o[ K>+ [kH(1) + CH (D) r
Ci(t)= —f dkd{ eXp(— KH(D) + cH0) —{&+[kH(1) + é“H(t)]z}—)
2m7) 41
N . . 2 . 2

o exp{_ h ([kHju) + LT | k() + 2H0)] )}

Xexp(=iq KH() — 11+ (H(D)}). (4.6)
Using the notation

N AL UL 2 1 (H,.(;)Z roH (t)Z) 4.7)
! Al = tanh(hBwy2)\ w;, ) ‘
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_H(l)2 T(1)2 S S S
Qs(1) = — = + AT+ H(7) hztanh(mw/z)
-
x (Hw,( t) n ijj(t)2> (48)

J
carrying out the remaining two Gaussian integrations one
finally finds that the correlation function is

C,(1)
_ 2 L4 O HLH®) ~ 1P 0,0~ H@)- 10O, (0+H (00, (0}
VD, (1)
(4.9)
where
1.
D,(1) = 0,(1)Q(1) - ZQl(t) . (4.10)

Note that indeed at time =0 the correlation function C,(0)
=1, as it should be.

B. Case 2: Partially factorized initial conditions

In this case the Wigner representation of the initial density
takes the form

N
P pya.px) =\ Il o) [ P ) P(g.%).,
j=1

(4.11)

where ®(g,x) represents the initial correlation of the system
and the bath, and is found to be

172 2 B 5
@(q,g):(L> exp<Q(’—‘) +20)Tq, cha)

G+T G+T
(4.12)
with
N 2
1 - hBw;
G=-3 %tanh(ﬂ)i) (4.13)
ﬁj=l (I)J 2
and
1o ¢ hBw
0(x) =~ ~Lx; tanh(—L>. (4.14)
ﬁj=1 (1)] ’ 2

Note that the function G is readily available in the continuum
limit via the spectral density J(w).

The correlation function is then found as in the case of
factorized initial conditions; the Gaussian integrals are car-
ried out by introducing the Fourier decomposition of three
delta functions for the variables p,(1),¢(7),Q(x) to find

2 0
Cy(1) = D, (t)dp{— 7D, t)Ez(f)} (4.15)
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and we have used the notation

D)= 0,(90:(0) - 70:(0”

[M () - HOIM (1) - H(1)]

- Ql(f) T +0,(1)
M(t) - H M(t)-H
X[ (r)ﬁF (r)} . le (z)ﬁF (r)] o
_ ([M(1) - HOI[1 - M(1)] - M()[M(1) — H(1)])>
Ey(1) = wT
+ Q[ =M =[1-M©OIM(1)Q, (1)
+M(1)20,(1), (4.17)
and
N
M) =F() + S LA (1) (4.18)
=1 @j

with Q,(¢) and Q,(r) defined as in Egs. (4.7) and (4.8).

C. Case 3: Unfactorized initial conditions

Although involving only Gaussian integrals, the algebra
becomes even more tedious in this case. First we present the
Wigner representation of the normalized initial distribution.
For this purpose we note that the normalization integral is

Zy =Tr{(le P|yp}
2

=Z N N 2
\/(1" + Ej:O wipr)[ /T + 2,]‘:0 (ujo/s;)]

« e—qi/[l/r+27=0(ujz-0/sj)] (4.19)
and we have used the notation:
\; hB\; \?
(B0
T 2 ) TRy
(4.20)

Note that Z3/Z is also the equilibrium limit of the correlation
functions [see also Eq. (2.13)]. It may be readily evaluated in
the continuum limit, using the spectral density of the normal
modes [Eq. (3.18)]. The equilibrium limit is a function of the
damping parameters.

After some algebra one then finds that the phase space
distribution of the initial conditions is
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(1" + E;VZO ujz.orj)l:l + FE;V:O (uJZ-O/sj)] 12

P (py.y) = p(p,.y) py.q)*(h)? (

P2

N
I'+ Ejio u]zosj)[l + TEj:O (ujz-o/rj)]

ro? Fq

Xexp

where we have used the notation

N N
jOp»
q= ]20 uj()yj’ pq E uj()p) » E rj hF
N
P=ﬁ(2 ujosjyj+l_'(q—qa)). (4.22)
J=0

To obtain the correlation function one introduces the Fou-
rier representation of six delta functions, corresponding to
the variables q,p,.q(?),p,(t),Q,P. One then finally finds
that the correlation function is

2% g2 )
Cs5(t) = i) exp(— F2D3(t)E3(t) ) (4.23)
The determinant D5(¢) takes the form
D;(1) =D, (1)D,,(1) = D, (1) (4.24)
with
212
Dyl =3 ;MW h; Ly(0?+2—— H? +20°TH(1)?,
(4.25)
I K12 .
Dyy(0) = 7T, = T3M3(0)? = = L0
.
+ 2H(Tt) + 20T H(1), (4.26)
F 2172 .
D, (1) = M%(I)M3(f) + ——L3(1)L5(1)
- 2@ - 2K TH()H(7), (4.27)

2

My(1) = H(t) + ﬁFJEO N tanhmﬁx /2)

cos(\;1), (4.28)
N 2

1 “jo
Ls(0) = H(o) + hrj% tanh(# 8\ /2)

sin(\;t), (4.29)

. , (4.21)

ﬁz(r + Ejvzo ufos ) [1 + FE (u ot ] 1+ FE (u?o/sj)

N 1 N uz -1
Lo=T+ 2 uls;, F’=(F+2 —19) . (4.30)
j=0 =0 Tj

T

and the exponent is

r
)Ma(r)D,,q(t)

S

F 2
E5(1) = (M%(l) )Dpp(t) (Ms(t)

+M3(1)°D,,(0). (4.31)

It is noteworthy that these results may be readily expressed
in the continuum limit through the spectral density function
for the normal modes.

D. Additional properties

Some insight into the relaxation dynamics may be ob-
tained by considering the initial average energy of the com-
bined system and bath for the three choices of the initial
conditions. In case 1, that is, for factorized initial conditions,
the initial average energy of the system and the bath is

o w N
<E>1=f dpqdqlp(pq’ H[dpxdx ¢j(px ,)C )]H
) - j=1
w+2 (c/w )+ HT? . %i .
AT T\ )
o ho

+= — % (4.32)
2’2 tanh(fi Bow; /2)°

For partially factorized initial conditions, case 2, the initial

average energy of the system and the bath is

<E>2 = f dpqdq Wq» CI) H

- j=1

Xldpy dx;y(ps %, ) P(pgg.x)]  (4.33)

? + HT2 1(
=—+5 wqa

G\ le  he,
v t$9) -5

'S o 255 tanh(%Bw; 12)

One notes that when considered as a function of the location
of the center of the initial wave packet (g,), the average
energy difference (E),—(E), is positive for small ¢, but be-

comes negative as g, increases. In other words, one of the
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1.0 T T T T 1.0
—C1
fffff C2 —ct
08 | e o .
A 08 FIG. 1. The dependence of
Sos \/\/V 1 g . the unshifted Gaussian wave
o7 | packet correlation function on the
friction strength at low tempera-
0.4 ¢ RY: ture. Panels (a)—(d) show results
| for the damping parameter vy
=1,3,10,50, respectively. The
%200 20 20 60 80 10.0 %500 2.0 20 60 80 10.0 solid, small dashed, and large
@ ! © ! dashed lines correspond to the re-
1.0 . . . . 1.0 spective choices of factorized,
partially factorized, and nonfac-
-3 torized initial conditions. The cen-
e 09 /| ter of the initial Gaussian wave
0.8 ¢ I { packet is located at the minimum
= < 0s ; E AW A ) of the harmonic oscillator poten-
5 7 5o %“ ‘,5,\,"’,' Wi ,'|§ l[v\\ T ‘v\/,“'.\/“; ,; :.l i ;;'v‘\‘ ] tial (¢,=0). The hqri.zoptal sol.id
06 | ] i MY | EJ ! l!i I ‘:\j‘;' R /rl,}‘ i ?1\“,".‘ Y line denotes the equilibrium limit.
07 ‘J VoV ' 'l/,’;' ﬂl’ ¥ 2 v i " ! H For further details, see the text.
l)'40.L0 2t0 4t0 6t0 8t0 10.0 0.60.0 2t0 4t0 GtO 8t0 10.0
(b) t C) t

differences between the factorized and partially factorized
cases is in the total energy deposited in the system.

Finally, for unfactorized initial conditions, case 3, one
finds

W (1T + 1/s,)?
1+1I/S

N
l% hik; Tq; 2

25 anh(Bipr2)

£ (R,-T2\ 2%
) fEe

<E>3 =

N
sz:o N (1T + 1/s))?

, 4.34
1+17/S ( )
where we used the notation
L)
1 u
—=> L (4.35)
S 0
N
R=2 uyyr;, (4.36)
j=0
and
N
Ry= 2 ujyrs (4.37)
j=0

We shall see in the numerical examples below that the aver-
age energy for the unfactorized case lies usually in between
the factorized and partially factorized initial distributions.

V. NUMERICAL RESULTS

The harmonic bath is discretized using the methodology
of Ref. [34]. The frequencies and coupling coefficients of the
harmonic bath are chosen so as to mimic an Ohmic bath with
a cutoff frequency w, and friction coefficient y so that the
spectral density is

J(w) = yw exp™@'® (5.1)

The discretization for a finite number of oscillators as sug-
gested by Wang et al. implies that

==, ln{l _]71;[1 —exp( Z’:)]}, (5.2)
|
7TNb (0%

where w,, is the maximal bath frequency (chosen in this pa-
per as 4w,.) and N,, is the number of bath oscillators used. In
the computations below we verified that for the time span
studied, the continuum limit is reached for the correlation
functions when using 40 bath degrees of freedom. The pa-
rameters chosen in the numerical computations are w.=2w,
I'=10, w=12, =1, and B=10. In Fig. 1, for the case that
q,=0, we plot the correlation function for overdamped (y
=50), strong (y=10), moderate (y=3), and weak (y=1) fric-
tion, respectively, and for the three choices of initial condi-
tions as described above. Given these parameters, one creates
the discretized bath of harmonic oscillators and then diago-
nalizes the Hamiltonian to obtain the normal mode form. The
resulting normal mode frequencies and orthogonalization

(5.3)
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FIG. 2. The dependence of
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matrix are used to obtain the relevant dissipation functions
needed to compute the correlation functions.

From Fig. 1, one notes that only in the overdamped fric-
tion limit is there a noticeable difference between the three
choices, and even here the differences between unfactorized
and partially factorized initial conditions are only quantita-
tive in nature. However, if the initial wave packet is signifi-
cantly shifted, that is, for the case that g,=1, one finds, as
shown in Fig. 2, that the differences between the three dis-
tributions are much larger. Here, the four panels correspond
to the friction values y=0.3, 1.0, 3.0, and 10.0. All other
parameters are the same as in Fig. 1. In this case, we find that
the choice of factorized initial conditions is closer to the
unfactorized case than the partially factorized choice.

As already noted in the previous section, when the shift g,
becomes sufficiently large, the total energy in the system is
smaller when comparing the partially factorized case to the
unfactorized case. This is shown in Fig. 3, where we plot the
average energy per mode for the three initial distributions as
a function of ¢,. Interestingly, the unfactorized average en-
ergy lies in between the two other cases. It is thus not sur-
prising that when considering the correlation functions
shown in Fig. 2, one finds that initially the decay is fastest
for the partially factorized initial conditions and slowest for
the factorized case. The differences increase with increasing
shift in the initial location of the Gaussian wave packet. This
is another indication why all three initial conditions are so
similar when the shift ¢,=0.

VI. DISCUSSION

In this paper we presented analytical formulas for the cor-
relation function of a dissipative harmonic oscillator, pre-

pared initially as a Gaussian wave packet, using three differ-
ent initial distributions for the thermal bath. The study has
been limited to an Ohmic heat bath with a cutoff frequency,
as this is the usual model employed in the study of dissipa-
tive systems. From the computations presented, it would
seem that for most “reasonable” parameter ranges, the use of
factorized initial conditions does not lead to qualitative
changes in the relaxation dynamics. This observation justifies
to some extent the prevalent use of factorized initial condi-
tions in various exact quantum and approximate semiclassi-
cal simulations of dynamics in dissipative systems.

We have also seen that the use of partially factorized ini-
tial conditions does not lead to any dramatic improvement in
the agreement with nonfactorized initial conditions. Since
the partially factorized case is somewhat more difficult to
implement numerically than the fully factorized choice, these
results would imply that the extra effort involved is not jus-
tified. However, the difference between factorized and par-
tially factorized dynamics is indicative also of the difference
between these two choices and the nonfactorized initial dis-
tribution. So in case of doubt, one should carry out the com-
putation for the factorized and partially factorized cases and,
only if the difference between them is significant, resort to
the nonfactorized initial distribution.

Shifting the mean location of the initial Gaussian wave
packet away from the equilibrium point magnifies the differ-
ences between the three distributions. The magnification
comes from the fact that the shift appears exponentially in
the correlation function. However, the rapid decay may also
be considered as a rapid dephasing of the original wave
packet, which is caused by the dissipative bath; this dephas-
ing is faster the further the initial wave packet is from
the thermal distribution. However, as already noted, qualita-
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FIG. 3. The dependence of the total energy per mode on the
initial shift of the Gaussian wave packet at low temperature. The
three lines correspond to the three choices of factorized, partially
factorized, and nonfactorized initial conditions for the bath. For
further details, see the text.

tively, the rate of this initial fast decay does not change dras-
tically as one changes the initial conditions of the heat bath.

We have also seen that the different choices of initial con-
ditions lead to a different total energy for the combined sys-
tem and bath. However, here too the differences are quanti-
tative, and for all three choices the correlation function

PHYSICAL REVIEW E 77, 021107 (2008)

relaxes to its equilibrium value even though the total energy
is different.

The results presented in this paper were for very low tem-
perature. As one increases the temperature of the bath, the
initial correlations become even less important as has also
been noted by Breuer er al. [18]. The partially factorized
distribution becomes identical to the unfactorized distribu-
tion in the classical high temperature limit.

The results for the dissipative harmonic oscillator do not
guarantee that correlations remain moderate also for anhar-
monic systems. Given present day technology, one can repeat
the tests presented in this paper for anharmonic systems but
with a limited number of bath oscillators if the temperature is
sufficiently low. The present study has been limited to Ohmic
heat baths. It could very well be that spectral densities that
lead to subdiffusive motion would further accentuate the dif-
ferences between the various initial densities. We have also
limited ourselves to the study of the evolution of a Gaussian
wave packet. Other observables might be more sensitive, as,
for example, in the study of decoherence. One should keep in
mind that the sensitivity to initial correlations does depend
on the observable. For each case considered, one should per-
haps repeat the kind of study presented in this paper, before
undertaking an expensive numerical computation based on
factorized initial conditions.
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